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A crash course in singular perturbation theory

Consider the ordinary differential equation:

ε
d2y

dx2
− y = 1

subject to y(0) = 0, y(1) = −1.
Standard (undergraduate) methods lead to the exact solution:

y = −1 +
1

1 − e2/
√

ε

�

e2/
√

ε−x/
√

ε − ex/
√

ε

�

Consider another approach if ε becomes small .
Setting ε = 0 in the ODE leads immediately to

y = −1

• This clearly satisfies the boundary condition at x = 1

• This clearly violates the boundary condition at x = 0
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Exact solution variation with ε
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Boundary-layer concept

Exact results suggest, as ε → 0:

• y ≈ −1 everywhere, except

• Close to x = 0, steep solution gradient

Suggests the concept of a boundary layer - the derivative term ( d2y
dx2

) term can no longer

be neglected.

Suggests need d2

dx2
= O(ε−1), i.e.

x = O(
√

ε)

Define X = x/
√

ε, then differential equation becomes

d2y

dX2
− y = 1

subject to y(X = 0) = 0, y(X → ∞) → −1
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The solution (continued)

Solution (marginally†) simpler than full problem, leads to

y = −1 + e−X

i.e.

y = −1 + e−x/
√

ε

This agrees with exact solution as ε → 0

Singular perturbation problems typically arise from the neglect of the highest order
derivative, which leads to ‘difficulties’ in thin zones - boundary layers, shear layers but
perfectly acceptable solutions outside these zones
If y(1) 6= −1, then another boundary layer exists, near x = 1.

† This is a Mickey Mouse example
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THE LIMIT OF SMALL VOLATILITY

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

• Typical value of volatility σ ≈ 0.1 − 0.4 (per (annum)
1

2 )

• Typical value of interest rates r ≈ 0.01 − 0.1 (per annum)

• BSE has σ2 multiplying highest order (S) derivative - conditions ripe for
SINGULAR PERTURBATION PROBLEM

• Consider a European (call) option

Simply setting σ = 0 leads to

∂C

∂t
+ rS

∂C

∂S
− rC = 0

Final condition: C(S, T ) = max(S − E, 0)

Solution is

C ≡ 0 if S − Ee−r(T−t) < 0

C = S − Ee−r(T−t) if S − Ee−r(T−t) > 0

• Discontinuity (in slope) at S = Ee−r(T−t) (at the forward money)
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The shear layer

• Asymptotic balancing suggests shear layer † to smooth out discontinuity - along
S = Ee−r(T−t) - at the forward money

• Thickness O(σ), so that σ2 ∂2

∂S2
∼ ∂

∂t

• DefineŜ = (S − Ee−r(T−t))/σ = O(1), Ĉ = C/σ = O(1)

• O(σ) equation: L{Ĉ} ≡ rŜ ∂Ĉ
∂Ŝ

+ ∂Ĉ
∂t

+ 1
2

�

Ee−r(T−t)

� 2 ∂2Ĉ
∂Ŝ2

− rĈ = 0

• Ĉ → 0 as Ŝ → −∞, Ĉ → Ŝ as Ŝ → ∞.

• Corresponding put option: P̂ → 0 as Ŝ → ∞, P̂ → −Ŝ as Ŝ → −∞.

† A thin region separating two mis-matching (outer) regions
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Can continue asymptotic expansion ad nauseam by V =

�∞
n=1 σnV̂n(Ŝ, t)

For n ≥ 2:

L{V̂n} = −ŜEe−r(T−t) ∂2V̂n−1

∂Ŝ2
− 1

2
Ŝ2 ∂2V̂n−2

∂Ŝ2
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Call option, E = 100, r = 0.06, T = 0.5, S = E−rT , σ = 0.2
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Barrier/down and out (put) options - CASE I

Option worthless if underlying hits/drops below prescribed value B

At expiry, P (S, T ) = max(E − S, 0) but P (S ≤ B, t) = 0

• First assume Ee−rT > B (shear layer does not hit barrier)

• P ≡ 0 if S > Ee−r(T−t), P = Ee−r(T−t) − S if B < S < Ee−r(T−t)

• Close to S = Ee−r(T−t), P = P̂ /σ, Ŝ = (S − E−r(T−t))/σ

• P (Ŝ, t) similar to European option already described (shear layer )

• Boundary layer close to S = B:
S∗ = (S − B)/σ2 (VERY THIN); P = O(1) (to match with above),

σ2S2 ∂2

∂S2
∼ S ∂

∂S
:

1
2
B2 ∂2P

∂S∗2
+ rB ∂P

∂S∗
= 0

Subject to P (S∗ = 0, t) = 0, P → Ee−r(T−t) − B as S∗ → ∞
• Quasisteady, solution

P (S∗, t) =

�

Ee−r(T−t) − B

�

(1 − e−
2r

B
S∗ )

• No interaction between boundary and shear layers

• Breakdown when τ = T−t
σ2

= O(1) - can be ‘fixed up’ - additional (τ ) derivative,
P → E − B as S∗ → ∞
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Barrier/down and out (put) options - CASE II

• ’Collision’ of shear and boundary layers at tc, when Ee−r(T−tc) = B

• Define τ1 = t−tc

σ2
, S∗ = S−B

σ2
(thin, as case I), P ∗ = P/σ2

• leads to
∂P ∗

∂τ1
+

B2

2

∂2P ∗

∂S∗2 + rB
∂P ∗

∂S∗ = 0

• Subject to P ∗ → 0 as S∗ → ∞, and, as τ1 → ∞:

P ∗ → Brτ1(1 − e−
2r

B
S∗ ) S∗ = O(1)

P ∗ → √
τ1B

�

−ηN(−η) + N ′(−η)

�

, η =
S∗ − Brτ1

B
√

τ1
= O(1)

P ∗ = Brτ1 − S∗, 0 � S∗ � Brτ1
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American Options, limit of small volatility (σ → 0)

Proceed as before - consider American put

• Set r = σR, - small interest rates, comparable to volatility =⇒ exercise boundary
lies inside shear layer

• P = 0, S > E, S − E = O(1) - worthless at asset prices O(1) above exercise
price (c.f. Europeans)

• P = E − S, S < E, S − E = O(1) - exercise below strike price

• Discontinuity along S = E, c.f. Europeans - key regime Ŝ = S−E
σ

= O(1)

• Exercise along S = Sf = E + σŜf0(t) + σ2Ŝf1(t) + . . .

• P = σP̂0(Ŝ, t) + σ2P̂1(Ŝ, t) + . . .

• O(σ−1): L{P̂0} ≡ 1
2
E2 ∂2P̂0

∂Ŝ2
+ RE ∂P̂0

∂Ŝ
+ ∂P̂0

∂t
= 0

• P̂0(Ŝf0, t) = −Sf0, ∂P̂0

∂Ŝ
(Ŝf0, t) = −1

• O(σ0): L{P̂1} = −EŜ ∂2P̂0

∂Ŝ2
− RŜ ∂P̂0

∂Ŝ
+ RP̂0

• P̂1(Ŝf0, t) = 0, ∂P̂1

∂Ŝ
(Ŝf0, t) = 2R

E
Ŝf1

• etc.
• Can scale E and R out of problem (Ŝf0, S∗) → E

R
(Ŝf0, S∗), t → t

R2
and if

0 ≤ t ≤ T → ∞ then universal set of results obtained (Widdicks et al, 2005)
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American Options - comparison
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coordinates used in both cases)
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Multiple underlyings

In the case of an option involving two underlyings

∂V

∂t
+

1

2
σ2
1S2

1

∂2V

∂S2
1

+ rS1
∂V

∂S1
+

1

2
σ2
2S2

2

∂2V

∂S2
2

+ rS2
∂V

∂S2
+ σ1σ2ρS1S2

∂2V

∂S1S2
− rV = 0

Setting σ1 = σ2 = 0 leads to the hyperbolic PDE

∂V

∂t
+ rS1

∂V

∂S1
+ rS2

∂V

∂S2
− rV = 0.

Many payoff scenarios exist. If

V (S1, S2, t = T ) = max(S1 − E1, S2 − E2, 0) (calls)

V (S1, S2, t = T ) = max(E1 − S1, E2 − S2, 0) (puts).
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Calls
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E1 = 1, E2 = 0.5, r = 0.1, ρ = 0.4, T = 1
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Puts (E1 > E2)
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If E1 < E2 the 45o line would intersect with the S2-axis
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• Shear layers along S1 = E1e−r(T−t) and S2 = E2e−r(T−t) similar to 1-D case
generally

• Somewhat different shear layer along S1 − E1e−r(T−t) = S2 − E2e−r(T−t) but
can be reduced to a 1D calculation

• Transition point at S1 = E1e−r(T−t), S2 = E2e−r(T−t).

• Can be extended to incorporate early exercise
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Calculation of implied volatilities

Can use this analysis to more efficiently back out volatilities and correlation coefficients -
by choosing ‘best’ regions of parameter space. Using asymptotic form along S2 = E2

and comparing with ‘exact’ calculation (American put, E1 = 1, E2 = 0.5, T = 1; in each
case r = σ1 = σ2 = σ, ρ = 0.4)
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Calculation of implied correlation coefficients
Error in calculation of ρ12, results along E1 − S1 = E2 − S2
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Pricing bonds

A canonical equation form for pricing bonds (using several popular interest-rate models)
leads to PDEs of the form (arising from stochastic modelling of interest rates)

1

2
σ2(r, t)r2β ∂2F

∂r2
+

�

f(r, t) + σ(r, t)rβλ(r, t)

� ∂F

∂r
− rF +

∂F

∂t
= 0

For a bond, the final condition is F (r, t = T ) = Ff (r).
For example, for the CIR model

f(r, t) = κ(θ − r), β = 1
2
, λ = −λ̂

√
r/σ.

This has a (messy) exact analytic solution. Let us use small perturbation theory instead.
Setting σ = 0 in the full equation, leads to (first-order) equations of the generic form
(τ = T − t):

(A0 − B0r)
∂F0

∂r
− rF0 − ∂F0

∂τ
= 0

Singular perturbation problems arising in mathematical finance: fluid dynamics concepts in option pricing – p.25/29



Solution of reduced problem

Equation can be solved very easily using the method of characteristics, i.e.

F0(r, τ) = Ff

�

A0

B0
− (

A0

B0
− r)e−B0τ

�

exp

�

1

B2
0

(A0 − B0r)(1 − e−B0τ ) − A0

B0
τ

�

In the case of options on these bonds, (horrible) exact solutions do exist, but the small
perturbation method is much simpler - and surprisingly accurate even for quite big σ’s.
For a call (maturing at t = T0, τ = T − T0) on a bond (maturing at t = T , τ = T )

C0(r, τ) = max Ff exp

�

1

B2
0

(A0 − B0r1)(1 − e−B0(T−T0)) − A0

B0
(T − T0)

�

− X, 0

× exp

�

1

B2
0

(A0 − B0r)(1 − e−B0τ1) − A0

B0
τ1

�

,

where

r1 =
A0

B0
− (

A0

B0
− r)e−B0τ1 , τ1 = τ − (T − T0)
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Illiquid markets
Modified Black-Scholes model (c.f. Liu & Yong, 2005, without fudge factor), with
feedback - a seriously nonlinear PDE - an example where insight gleaned from
asymptotics is invaluable.

−∂P

∂τ
+

1
2
σ2S2 ∂2P

∂S2

(1 − ρ ∂2P
∂S2

)2
+ rS

∂P

∂S
− rP = 0

Consider the European put version of this option (using my favourite Crank-Nicolson
method)
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Asymptotics close to expiry (τ → 0)

Solution takes the form P → −τ
1
2 ŜH(−Ŝ) + τP̂0(Ŝ) + . . ., where Ŝ = (S − E)/τ

1
2 is

the key (shear-layer) scaling, close to strike price (H(−Ŝ) the Heaviside function)

−P̂0 + 1
2
Ŝ

∂P̂0

∂Ŝ
+

1
2
σ2X2 ∂2P̂0

∂Ŝ2

(1 − ρ ∂2P̂0

∂Ŝ2
)2

− rH(−Ŝ) = 0

where P̂0 and ∂P̂0

∂Ŝ
continuous at Ŝ = 0, and P̂0 + H(−Ŝ)rE → 0 as |Ŝ| → ∞.

Discontinuity in the ∆ at S = E of +1 for all time - can build jump condition into full
calculation (using Keller-Cebeci box scheme)
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Conclusions

• Singular perturbation techniques can provide quick, simple solutions across wide
regions of parameter space.

• Along (thin) zones, discontinuities may occur, but can be resolved by blending (i.e.
boundary or shear) layers.

• Gives insight into financial product pricing

• Potentially quite universal tool for rapid (and surprisingly accurate) pricing of
financial products described by Black-Scholes-like PDEs.
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