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A crash course In singular perturbation theory

Consider the ordinary differential equation:

d2y _1
G VT

subject to y(0) = 0, y(1) = —1.
Standard (undergraduate) methods lead to the exact solution:

_ ! 2/ e—z/\E _ u/\E
4= 1+1_62/\/€(6 © )

Consider another approach if e becomes small.
Setting € = 0 in the ODE leads immediately to

y=-—1

This clearly satisfi es the boundary conditionat z = 1

This clearly violates the boundary conditionat z = 0
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Exact solution variation with e
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Boundary-layer concept

Exact results suggest, as ¢ — O:
y ~ —1 everywhere, except

Close to x = 0, steep solution gradient

2
Suggests the concept of a boundary layer - the derivative term (37?2/) term can no longer
be neglected.

Suggests need % = O0(e 1), e
z = O(Ve)
Defi ne X = z/\/e, then differential equation becomes
d?y
dX?
subjectto y(X =0) =0, y(X — o0) — —1

—y=1
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The solution (continued)

Solution (marginallyt) simpler than full problem, leads to

y:—l—l—e_X

y:—l—l—e_x/\/E

This agrees with exact solution as ¢ — 0

Singular perturbation problems typically arise from the neglect of the highest order
derivative, which leads to ‘diffi culties’ in thin zones - boundary layers, shear layers but
perfectly acceptable solutions outside these zones

If y(1) #£ —1, then another boundary layer exists, near z = 1.

T This is a Mickey Mouse example
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THE LIMIT OF SMALL VOLATILITY

oV 1 ., 8%V oV
9V 2529 59 Ly
ot T27° 552 T g T

Typical value of volatility o ~ 0.1 — 0.4 (per (annum) %)
Typical value of interest rates r =~ 0.01 — 0.1 (per annum)

BSE has o2 multiplying highest order (S) derivative - conditions ripe for
SINGULAR PERTURBATION PROBLEM

Consider a European (call) option

Simply setting o = 0 leads to

o + TSa—C —rC =0
ot oS
Final condition: C'(S,T) = maz(S — E,0)
Solution is
C=0 ifS—Ee"T-t <0
C=8—FEe Tt S _Ee m(T-t) >

e Discontinuity (in slope) at S = Ee—"(T—1) (at the forward money)
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The shear |layer

Asymptotic balancing suggests shear layer T to smooth out discontinuity - along
S = Ee~"(T—1t) _ at the forward money

. 2
Thickness O(c), so that 02 25 ~ &

DefineS = (S — Ee "(T=1)) /o = O(1), C = C/o = O(1)
O(o) equation: £L{C} = rSaC + %f + 1 [Be (T B gz —rC =0
C’—>OaSS'—>—oo,C—>SaSS—>oo.

Corresponding put option: P — 0as S — oo, P — —S as S — —oo.

T A thin region separating two mis-matching (outer) regions
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P=Fe "(T-t) _g
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Put option, £ = 71, r = 0.05, T = 0.5
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Can continue asymptotic expansion ad nauseam by V' = "> | a”f/n(S’, t)

Forn > 2:

L{V,} = —SEe

0.01

0.001

error

le-05 .

1le-06

—T‘(T—t) 82‘777/_1 1‘§2 82‘7”_2

052 2 052

0.0001

Call option, £ = 100, r = 0.06, T =0.5,S=E~"1, 6 =0.2
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Barrier/down and out (put) options - CASE |

Option worthless if underlying hits/drops below prescribed value B

At expiry, P(S,T) = maz(E — S,0) but P(S < B,t)=0
First assume Ee~ "1 > B (shear layer does not hit barrier)
P=0ifS> FEe " T=Y) P=FEe "(T71) _SifB< S < Ee (T}
Closeto S = Ee"(T-t) p=P/o,S=(S—E"T-t)) /o
P(S’, t) similar to European option already described (shear layer)

Boundary layer close to S = B:
S* = (S — B)/o? (VERY THIN); P = O(1) (to match with above),

2
0.252 0

o .
552 ~ 955

1 p2 8%P P __
585”5972 trBgs+ =0

Subjectto P(S* =0,t) =0, P — Ee "(T—%) — Bas §* — o
Quasisteady, solution

P(S*,t) = [Ee="T=t) _B](1—e B5")
No interaction between boundary and shear layers

Breakdown when 7 = To_gt = O(1) - can be ‘fi xed up’ - additional () derivative,

P—FEF—-—BasS* — oo
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Barrier/down and out (put) options - CASE 11

'Collision’ of shear and boundary layers at t., when Ee—"(T—tc) = B

Define n, = =te, §* = 5=B (thin, as case |), P* = P/o>2

o2 o2

leads to
oP* N B2 92 p* N BaP* 0
T —
o011 2 0S*2 0S*

Subjectto P* — 0as S* — oo, and, as 71 — oo

P* = Brm(l—e B5) §*=0(1)

P* — /T1B [-nN(—n)+ N'(-n)], n= S*gng = O(1)

P* =Brm; — S*, 0« S* < Brn
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American Options, limit of small volatility (c — 0)

Proceed as before - consider American put

Set r = o R, - small interest rates, comparable to volatility — exercise boundary
lies inside shear layer

P=0,8>FE,S—FE=0(1) - worthless at asset prices O(1) above exercise
price (c.f. Europeans)

P=F—-S S<E,S—FE=0(1) - exercise below strike price

Discontinuity along S = E, c.f. Europeans - key regime S = 2=£ = O(1)

(o)

Exercise along S = Sy = E + 0Sso(t) +02Sp1(t) + . ..
P =0Py(S,t)+ 2P (S, t) + ...

A 2 A A A
O(c~1): L{P} = $ E?220 + RESTL 4 220 — 0

Po(Sfo,t) = —Sjo, %(Sfo,t) = —1

. A 502 P 5 OP, A
O(a): L{P1} =—-FES 8§20 — RS 859 + RP,

A~ A~ ap A~ A~
P1(Sfo,t) = 0, 52 (Sr0,t) = S
etc.
Can scale E and R out of problem (5o, S*) — £(S0, S*), t — -5 and f

R2
0 <t <T — oo then universal set of results obtained (Widdicks et al, 2005)
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American Options - comparison

14 T T T T T T T T T

L,
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2-term asymptotic
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Comparison of 'exact’ and asymptotic results, S = £ = 100, r = o, T = 0.5 (body-fi tted
coordinates used in both cases)
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Multiple underlyings

In the case of an option involving two underlyings

oV

1 5 0%V oV
_|__
t 2

+rS1— +

1 5 20%V vV 82V
1952 851 ' 2

+ 7Sy —— -|-0102/05152

2 Aa0 — TV =0
053 0S2 05152

028 038

Setting 01 = o2 = 0 leads to the hyperbolic PDE

oV oV v
ATy A Sy <A AR VY
ot T as, T25g, T

Many payoff scenarios exist. If

V(Sl, So,t = T) = maX(Sl — FE1,S2 — E>, O) (calls)
V(Sl, So,t = T) = max(El — S1, Fy — So, 0) (puts).
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If &1 < E5 the 45° line would intersect with the Sy-axis
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Shear layers along S1 = Ei1e"(T—%) and Sy = Ese~"(T—1) similar to 1-D case
generally

Somewhat different shear layer along S1 — E1e~"(T—%) = §5 — Ege—"(T—1) put
can be reduced to a 1D calculation

Transition pointat S1 = E1e "(T—t) Sy = Eoe"(T—1),

Can be extended to incorporate early exercise
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Calculation of implied volatilities

Can use this analysis to more effi ciently back out volatilities and correlation coeffi cients -
by choosing ‘best’ regions of parameter space. Using asymptotic form along So = E>
and comparing with ‘exact’ calculation (American put, £1 = 1, E2 = 0.5, T = 1, in each
caser =01 =02 =0, p=0.4)

[\

-1e-04 |

-0.0002 -

o = 0.05

-0.0003 -

-0.0004 -

oo error
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Calculation of implied correlation coefficients

Error in calculation of p12, results along £ — S1 = E2 — 52

0.2
0.18
o=20.1
0.16
-
o
- 0.14 |+
(%)
AN 012 |
Lol
Q
0.1
o = 0.05
0.08 |
0.06
002 1 1 1 1 1 1 1
0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82
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Pricing bonds

A canonical equation form for pricing bonds (using several popular interest-rate models)
leads to PDEs of the form (arising from stochastic modelling of interest rates)

F F
+ [f(”‘,t)—l—a(r,t)rﬁ)\(r,t)] g_r —rF + %_t —0

1

02 F
502 (r, t)TQB

Or2

For a bond, the fi nal condition is F'(r,t =T) = F;(r).
For example, for the CIR model
firnty=r(0—r), B=1, Xx=-A/r/o.
This has a (messy) exact analytic solution. Let us use small perturbation theory instead.
Setting o = 0 in the full equation, leads to (fi rst-order) equations of the generic form
(r =T —1):
0Fp 0Fp

Ao — Bor) 22 _ Ry - £0 —
(Ao OT)@T’ rio = -
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Solution of reduced problem

Equation can be solved very easily using the method of characteristics, i.e.

b = (22— (22 e Y e ko - By — =y - 20,

In the case of options on these bonds, (horrible) exact solutions do exist, but the small
perturbation method is much simpler - and surprisingly accurate even for quite big o’s.
For a call (maturingatt = Ty, 7 =T — Tp) ona bond (maturingatt =T, 7 =1T)

1 A
Co(r,7) = max (Ff exp(—Q(Ao — Bor1)(1 — e~ Bo(T=To)y _ 8 _ To)> - X, o>

B? Bo

1 A
X exp(B—g(Ao — Bor)(1 — e_BOTl) _ 3—27'1)7
where
A A
r= =2 - (—0 —)e BT 1 =7 — (T —T))
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lliquid markets

Modifi ed Black-Scholes model (c.f. Liu & Yong, 2005, without fudge factor), with
feedback - a seriously nonlinear PDE - an example where insight gleaned from
asymptotics is invaluable.

oP 1 2528 P 9P
_ 4 2 08% .87 _yP=0
or (1— 3 P)2 oS
P 552

Consider the European put version of this option (using my favourite Crank-Nicolson
method)

15

05 |

-05 |

-15

1 1 1 1
0.96 0.98 1.02 1.04
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Asymptotics close to expiry (t — 0)

1, A Ao A 1
Solution takes the form P — —72 SH(—S) + 7Py(S) 4+ ...,where S = (S — E)/72 is

the key (shear-layer) scaling, close to strike price (H(—S) the Heaviside function)

~ Aap() 2 32 A
—Py+ 18 IR A — —rH(=8)=0
(1 —pP 8§20 )2

where P, and %—? continuous at S = 0, and Py + H(—S)rE — 0 as |S| — oo.

Discontinuity in the A at S = E of +1 for all time - can build jump condition into full
calculation (using Keller-Cebeci box scheme)

0.2

<] o4
=————
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Conclusions

Singular perturbation techniques can provide quick, simple solutions across wide
regions of parameter space.

Along (thin) zones, discontinuities may occur, but can be resolved by blending (i.e.
boundary or shear) layers.

Gives insight into fi nancial product pricing

Potentially quite universal tool for rapid (and surprisingly accurate) pricing of
fi nancial products described by Black-Scholes-like PDEs.
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